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One Way Things Get EDMs
Starting at fundamental level and working up:

Underlying fundamentaltheory generates three
T -violating πNN vertices:

Then neutron gets EDM,e.g., from chiral-PTdiagrams like this:
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How Diamagnetic Atoms Get EDMs
Nucleus can get one fromnucleon EDM or
T-violating NN interaction: π

ḡ

γ

VPT ∝
{[ḡ0τ1 · τ2 −

ḡ1

2
(τz1 + τz1 ) + ḡ2 (3τz1τz2 − τ1 · τ2)] (σ1 − σ2)

− ḡ1

2
(τz1 − τz2 ) (σ1 + σ2)} · (∇1 −∇2) exp (−mπ |r1 − r2|)

mπ |r1 − r2|Finally, atom gets one from nucleus. Electronic shielding makesthe relevant nuclear object the “Schiff moment”
〈S〉 ≈ 〈

∑
p r

2
p zp + . . .〉 rather than the dipole moment 〈Dz〉 .Job of nuclear theory: calculate dependence of

〈S〉 on the ḡ’s.
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How Does Shielding Work?
Theorem (Schiff)
The nuclear dipole moment causes the atomic electrons to rearrange
themselves so that they develop a dipole moment opposite that of the
nucleus. In the limit of nonrelativistic electrons and a point nucleus
the electrons’ dipole moment exactly cancels the nuclear moment, so
that the net atomic dipole moment vanishes.



How Does Shielding Work?Proof
Consider atom with nonrelativistic constituents (with dipole moments
~dk ) held together by electrostatic forces. The atom has a “bare” edm
~d ≡

∑
k
~dk and a Hamiltonian
H = ∑

k

p2k
2mk

+∑
k

V (~rk ) −∑
k

~dk · ~Ek

= H0 +∑k (1/ek )~dk · ~∇V (~rk )
= H0 + i

∑
k

(1/ek ) [~dk · ~pk ,H0

]
K.E. + Coulomb dipole perturbation
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How Does Shielding Work?The perturbing Hamiltonian
Hd = i

∑
k

(1/ek ) [~dk · ~pk ,H0

]
shifts the ground state |0〉 to

|0̃〉 = |0〉+∑
m

|m〉 〈m|Hd |0〉
E0 − Em

= |0〉+∑
m

|m〉 〈m| i
∑

k (1/ek )~dk · ~pk |0〉 (E0 − Em)
E0 − Em

= (1 + i
∑
k
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How Does Shielding Work?The induced dipole moment ~d ′ is
~d ′ = 〈0̃|

∑
j

ej~rj |0̃〉

= 〈0|
(
1− i

∑
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)

×
(
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∑
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= i 〈0|
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∑

k (1/ek )~dk · ~pk] |0〉
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∑
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∑
k

~dk

= − ~d

So the net EDM is zero!
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All is Not Lost, Though. . .
Th nucleus has finite size. Shielding is not complete, and nuclear Tviolation can still induce atomic EDM ~d .Post-screening nucleus-electron interaction proportional to Schiffmoment:

~S ≡
∑
p

ep

(
r2p −

5

3
〈R2ch〉

)
~rp + . . .

If, as you’d expect, 〈~S〉 ≈ R2
N 〈 ~D〉, then ~d is down from 〈 ~D〉 by

O
(
R2
N /R2

A

)
≈ 10−8 ,

Ughh! Fortunately the large nuclear charge and relativistic wavefunctions offset this factor by 10Z 2 ≈ 105.Overall suppression of 〈 ~D〉 is only about 10−3.
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Theory for Heavy Nuclei
S ∝ Z 2, so experiments are in heavy nucleibutcan’t solve Schrödinger eq’n for A > 40. Usually apply approximationscheme, then account for omitted physics by modifying operators.

Paradigm: Density functional TheoryHöhenberg-Kohn-Sham: Can get exact density from Hartreecalculation with appropriate effective interaction (density functional).
Nuclear version: Mean-field theory with density-dependentinteractions (called Skyrme interactions) built from delta functions andderiviatives of delta functions plus whatever corrections one canmanage, e.g.projection of deformed wave functions onto states with goodangular momentummixing of several mean fields. . .Density functional still obtained largely through phenomenology.
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Deformed Skyrme Mean-Field Theory

"#"$#%&! '()*+,!-.+,/0*+,1!'/23+,.4)5! F!

Zr-102: normal density and pairing density  

HFB, 2-D lattice, SLy4 + volume pairing 
Ref: Artur Blazkiewicz, Vanderbilt, Ph.D. thesis (2005) 

G=HI!β"
JKLM&N76! +OKI!β"
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Applied Everywhere
Nuclear ground state deformations (2-D HFB) 

 Ref: Dobaczewski, Stoitsov & Nazarewicz (2004)    arXiv:nucl-th/0404077 

"#"$#%&! %V!'()*+,!-.+,/0*+,1!'/23+,.4)5!



Varieties of Recent Schiff-Moment Calculations
Need to calculate

S = 〈Sz〉 =∑
m

〈0|VPT |m〉 〈m|Sz |0〉
E0 − Ei

+ c.c .

where H = Hstrong + VPT .

Hstrong represented either by Skyrme density functional or bysimpler effective interaction, treated non-self-consistently.
VPT either included nonperturbatively or via explicit sum overintermediate states.Nucleus either forced artificially to be spherical or allowed todeform.
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Spherical Calc.: 198Hg + Polarization by Last Neutron
1. Skyrme HFB (mean-field treatment of pairing) in 198Hg.2. Polarization of core by last neutron and action of VPT treated asexplicit corrections in RPA, which sums over intermediate states.

〈Sz〉Hg ≡ a0 gḡ0 + a1 gḡ1 + a2 gḡ2 (e fm3)
a0 a1 a2SkM? 0.009 0.070 0.022SkP 0.002 0.065 0.011SIII 0.010 0.057 0.025SLy4 0.003 0.090 0.013SkO′ 0.010 0.074 0.018Dmitriev & Senkov RPA 0.0004 0.055 0.009

Range of variation here doesn’t look too bad. But these calculationsare not the end of the story.
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Deformation and Angular-Momentum RestorationIf deformed state has good intr. Jz = K , averaging over angles gives:
|J,M〉 = 2J + 1

8π2

∫
DJ∗
MK (Ω)R̂(Ω) |ΨK 〉 dΩ

Matrix elements;
〈J,M| Ŝi |J ′,M ′〉 ∝

∫ ∫ ∑
j

dΩ dΩ′ × (some D-functions)
× 〈ΨK | R̂−1(Ω′) Ŝj R̂(Ω) |ΨK 〉

rigid defm.−−−−−−→Ω≈Ω′ (Geometric factor)× 〈ΨK |Ŝz |ΨK 〉︸ ︷︷ ︸
〈Ŝ〉intr.For expectation value in J = 1

2 state:
S = 〈Ŝz〉J= 1

2 ,M= 1
2

=⇒ {
〈Ŝ〉intr. spherical nucleus
1
3 〈Ŝ〉intr. rigidly deformed nucleus

Exact answer somewhere in between.
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S = 〈Ŝz〉J= 1
2 ,M= 1

2
=⇒ {
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Deformed Calculation Directly in 199Hg
Deformation actually small and soft — perhaps worst case scenariofor mean-field. But in odd nuclei, that’s the limit of currenttechnology1. VPT included nonperturbatively and calculation done inone step. Includes more physics (deformation) than RPA calculations,plus an economy of approach. Otherwise more or less equivalent.
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Induced change indensity distributionindicates delicateSchiff moment.

1Has some “issues”: doen’t get ground sate spin correct, limited for now toaxially-symmetric minima, which are sometimes a little unstable, true minimumprobably not axially symmetric . . .
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Results of “Direct” Calculation
Like before, use a number of Skyrme functionals:

Egs β Eexc. a0 a1 a2SLy4 HF -1561.42 -0.13 0.97 0.013 -0.006 0.022SIII HF -1562.63 -0.11 0 0.012 0.005 0.016SV HF -1556.43 -0.11 0.68 0.009 -0.0001 0.016

SLy4 HFB -1560.21 -0.10 0.83 0.013 -0.006 0.024SkM* HFB -1564.03 0 0.82 0.041 -0.027 0.069Fav. RPA QRPA — — — 0.010 0.074 0.018
Hmm. . .
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What to Do About Discrepancy

Authors of these papers need to revisit/recheck their results.Improve treatment further:Variation after projectionTriaxial deformation

Ultimate goal: mixing of many mean fields (aka “generatorcoordinates”)
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Schiff Moment with Octupole Deformation
Here we treat always VPT as explicitperturbation:
S =∑

m

〈0|Sz |m〉 〈m|VPT |0〉
E0 − Em

+ c .c .

where |0〉 is unperturbed ground state. Calculated 225Ra density

Ground state has nearly-degenerate partner |0̄〉 with same oppositeparity and same intrinsic structure, so:
S −→ 〈0|Sz |0̄〉 〈0̄|VPT |0〉

E0 − E0̄

+ c .c . ∝ 〈S〉intr. 〈VPT 〉intr.
E0 − E0̄

S is large because 〈S〉intr. is collective and E0 − E0̄ is small.
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A Little on Parity DoubletsWhen intrinsic state | 〉 is asymmetric, it breaks parity.

In the same way we get good J , we average over orientations to getstates with good parity:
|±〉 = 1√

2

(
| 〉 ± | 〉

)
These are nearly degenerate if deformation is rigid. So with |0〉 = |+〉and |0̄〉 = |−〉, we get

S ≈ 〈0|Sz |0̄〉 〈0̄|VPT |0〉
E0 − E0̄

+ c.c.

And in the rigid-deformation limit
〈0|Ô|0̄〉 ∝ 〈 |Ô| 〉= 〈Ô〉intr.

again like angular momentum.
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Spectrum of 225Ra



225Ra Results
Hartree-Fock calculation with our favorite interaction SkO’ gives

SRa = −1.5 gḡ0 + 6.0 gḡ1 − 4.0 gḡ2 (e fm3)
Larger by over 100 than in 199Hg!

Variation a factor of 2 or 3.
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Current “Assessment” of Uncertainties
Judgment in upcoming review article (based on spread in reasonablecalculations):
Nucl. Best value Range

a0 a1 a2 a0 a1 a2
199Hg 0.01 0.01 0.02 0.005 – 0.02 -0.03 – 0.09 0.01 – 0.03
129Xe -0.008 -0.006 -0.009 -0.005 – -0.05 -0.003 – -0.05 -0.005 – -0.1
225Ra -1.5 6.0 -4.0 -1 – -6 4 — 20 -2 – -15

Uncertainties pretty large, particularly for g1 in 199Hg (range includeszero). How can we reduce them?



Grounding the Calculations: Hg
Improving the many-body theory to handle soft deformation, thoughprobably necessary, is tough. But can also try to optimize densityfunctional.
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Isoscalar dipole operatorcontains r2z just like Schiffoperator. Can see how wellfunctionals reproducemeasured distributions, e.g.in 208Pb.
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More on Grounding Hg Calculation

VPT probes spin density;functional should have goodspin response. Can adjustrelevant terms in, e.g. SkO’,to Gamow-Teller resonanceenergies and strengths.



Grounding the Calculations: Ra
Here there have been importantrecent developments.
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This is 224Ra; transitions in 225Ra willbe measured soon.
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THE END

Thanks for your kind attention.


